From AlleleBlog: http://allelebiotech.com/blogs/2010/09/dealing-with-interferon-response-when-doing-rnai/
Off-target effects are a major problem when using RNA interference (RNAi) to silence genes in mammalian systems. One potential source of off-target effects, by either transfected siRNA duplexes or transcriptionally expressed shRNAs, is the inadvertent activation of the interferon response. There are several steps that can be taken to deal with this problem.
Delivery
Interferon response is more likely when high levels of siRNA are used; it is important to transfect the minimum amount of the siRNA duplex that gives rise to a specific RNAi response, as assessed by the level of expression of the target mRNA and/or protein. The level of stable shRNA expression achieved by using lentiviral or retroviral vectors is comparatively modest. Unless very high levels of shRNA expression are achieved, for example, by using highly transfectable cells and a very efficient shRNA expression plasmid, nonspecific activation of the innate immune response are less likely to be induced.
Design
Previous work has shown that the interferon response is induced by dsRNAs of ?30 bp in length and that perfect dsRNAs of as little as 11 bp in length can produce a weak induction. One possible approach to solving the problem of nonspecific activation of the cellular interferon response is to design the siRNA duplex or shRNA precursor so that it does not contain any stretches of perfect dsRNA of ?11 bp.
Detection
If activation of the interferon response remains a concern, it is possible to routinely check for this effect during the course of an RNAi experiment. Analyzing the level of expression of an interferon-response gene, such as oligoadenylate synthase-1 (OAS1), interferon-stimulated gene-54 (ISG54), and guanylate-binding protein (GBP), in the transfected or transduced cells by northern blot or RT- PCR assays are commonly used.
Can there be any more convenient alternative method for checking interferon response? One potentially useful product could be HiTiter™ pre-packaged lentiviruses that would have a fluorescent protein (mTFP1, mWasabi, or the brightest FP in lanYFP) under the control of an ISRE (IFN-stimulated response element) or GAS (IFN gamma-activating sequence)*. This could be another group of Product-on-Demand type of reagents, meaning that we will have the design ready, but only to produce them upon ordering. This way the cost to us and the price to customers can be kept at minimum.
To read the wholr blog, click here.
Showing posts with label RNA interference. Show all posts
Showing posts with label RNA interference. Show all posts
Sunday, September 26, 2010
Friday, September 18, 2009
Effective Concentrations and Effectiveness of siRNA
RNA oligo is significantly more difficult to synthesize than DNA oligos, mainly because the efficiency of coupling each new ribonucleotide during RNA synthesis is a few fold lower than deoxyribonucleotide during DNA synthesis. Typically, there is an ~10% chance a DNA oligo of 21 bases will have a mutation (most frequently a deletion mutation); for an RNA oligo of 21 bases, as in an siRNA pair, such chance is much higher. Furthermore, after combining the sense and antisense siRNA strands, some RNA molecules will remain as single-stranded thereby not fitting for the RNAi apparatus.
RNA interference is a dose-sensitive process — specificity of gene silencing is meaningful only relative to the active concentration of siRNA used. When the concentration is too low, even the most effective siRNAs would fail to cause gene expression knockdown; when too high, non-specific effects will be duly observed. Therefore, it is essential that the concentrations of siRNAs are measured correctly. When doing so, one must consider not only what the apparent concentrations are by OD260 reading, but also whether the RNA strands are of full-length and whether only dsRNA molecules are counted. This issue might not affect data interpretation if appropriate controls are included in one set of RNAi experiments, but it could have significant influence on conclusions if data from different experiment sets or labs are compared or combined.
HPLC purification currently provides the best means to remove RNA molecules with deletions or remain single-stranded, however, the price tag added by most reagent providers for such treatment has been prohibiting because manufacturers either need to start synthesis at a much bigger scale to obtain promised amount, or they do not promise the delivery quantity at all. The phosphoramidites (oligo building blocks) for RNA synthesis can be 10 times or more expensive than for DNA. Some companies offer alternative purification methods such as a cartridge type device, but they can only remove salt and small impurities, not RNA oligos of shorter lengths accumulated at each cycle of amide coupling. The AllHPLC siRNAs within Allele’s RNAi product line, pre-validated or custom made, are uniformly HPLC purified with 5 OD or 12.5 nmol of double-stranded, annealed siRNA delivered. Allele passes to customers the cost savings from manufacturing our own RNA amidites and other reagents for oligo synthesis. The pre-validated HPLC purified double-stranded siRNA is offered today at $149/12.5 nmol.
Before purchasing siRNAs, even at a low cost of $29 per pair of HPLC purified control siRNA from Allele, researchers still need to consider how well their cells can be transfected. For hard-to-transfect cells, lentiviral vectors carrying a shRNA expressing cassette is often a better choice. To establish stable cell lines, plasmid vectors should be considered. For low cost target screening, the PCR format linear siRNA expression cassettes have advantages.
RNA interference is a dose-sensitive process — specificity of gene silencing is meaningful only relative to the active concentration of siRNA used. When the concentration is too low, even the most effective siRNAs would fail to cause gene expression knockdown; when too high, non-specific effects will be duly observed. Therefore, it is essential that the concentrations of siRNAs are measured correctly. When doing so, one must consider not only what the apparent concentrations are by OD260 reading, but also whether the RNA strands are of full-length and whether only dsRNA molecules are counted. This issue might not affect data interpretation if appropriate controls are included in one set of RNAi experiments, but it could have significant influence on conclusions if data from different experiment sets or labs are compared or combined.
HPLC purification currently provides the best means to remove RNA molecules with deletions or remain single-stranded, however, the price tag added by most reagent providers for such treatment has been prohibiting because manufacturers either need to start synthesis at a much bigger scale to obtain promised amount, or they do not promise the delivery quantity at all. The phosphoramidites (oligo building blocks) for RNA synthesis can be 10 times or more expensive than for DNA. Some companies offer alternative purification methods such as a cartridge type device, but they can only remove salt and small impurities, not RNA oligos of shorter lengths accumulated at each cycle of amide coupling. The AllHPLC siRNAs within Allele’s RNAi product line, pre-validated or custom made, are uniformly HPLC purified with 5 OD or 12.5 nmol of double-stranded, annealed siRNA delivered. Allele passes to customers the cost savings from manufacturing our own RNA amidites and other reagents for oligo synthesis. The pre-validated HPLC purified double-stranded siRNA is offered today at $149/12.5 nmol.
Before purchasing siRNAs, even at a low cost of $29 per pair of HPLC purified control siRNA from Allele, researchers still need to consider how well their cells can be transfected. For hard-to-transfect cells, lentiviral vectors carrying a shRNA expressing cassette is often a better choice. To establish stable cell lines, plasmid vectors should be considered. For low cost target screening, the PCR format linear siRNA expression cassettes have advantages.
Subscribe to:
Posts (Atom)