Showing posts with label human iPSC. Show all posts
Showing posts with label human iPSC. Show all posts

Thursday, December 10, 2009

ASCB Abstract: Increased rate of reprogramming of induced pluripotent stem cells using high-titer lentiviral vectors encoding multiple cell growth and survival regulatory genes

Objective: Differentiated cells can be reprogrammed into induced pluripotent stem cells (iPSC) with enforced expression of multiple transcription factors. We aim to improve the reprogramming efficiency using high titer lentiviral vectors encoding additional cell growth and survival regulatory genes.

Methods: Lentiviral vectors encoding multiple cell cycle and apoptosis genes in addition to c-Myc, Klf4, Oct4 and Sox2 were constructed and used to generate iPSC. The iPSC were extensively characterized by immunohistochemical staining and flow cytometry.

Results: Human mesenchymal stem cells can be efficiently transduced and reprogrammed into iPSC using high-titer lentiviral vectors encoding the four known transcription factors. The addition of siRNA suppressing p53 and cell cycle and survival genes including telomerase and BclXL significantly increased the efficiency and rate of iPSC generation. Human iPSC colonies were formed within a week after lentiviral gene transfer.

Conclusions: The protocol for iPSC generation has been improved with high titer lentiviral vectors encoding additional immortalization cellular factors regulating cell cycle progression, senescence and apoptosis. Deletion of the integrated lentiviral genomes using Cre-loxP recombination could increase the safety profile of the reprogrammed iPSC.

more at http://allelebiotech.com/blogs/2009/12/ascb-abstract-increased-rate-of-reprogramming-of-induced-pluripotent-stem-cells-using-high-titer-lentiviral-vectors-encoding-multiple-cell-growth-and-survival-regulatory-genes/

Wednesday, September 9, 2009

iPS Cells: Feeder Cells

Allele’s entire iPSC product line is designed for the ease of the researcher. Each component in our iPSC catalog will shave priceless time off your protocol by eliminating the tedious steps in iPS induction so you can get down to work.

Allele is adding a major component to its iPSC line: pre-irradiated, ready-to-use, system specific, bFGF-Producing Feeder Cells for iPSC propagation!

Using Allele’s bFGF-Producing Feeder Cells avoids the usual problems associated with MEF cell lines. They are maintained at low passages, come pre-irradiated and ectopically express bFGF so there is no need to supplement your medium with additional growth factors.

Additionally, Allele Biotech is introducing human fibroblasts to the market for iPSC work. MEF is good for mouse iPSC reprogramming but human fibroblast feeders are preferred when creating human iPSCs due to their secreted factors. Propagate human iPSC with greater efficiency while eliminating non-human cells for therapeutic use of human iPSCs!

As always we encourage customer feed back. We are interested to hear about your stem cell work, needs, and requests for new products. We also welcome those who have new ideas and potential products to collaborate with us. We are here to help advance your research and get your technologies to the public.

If you are enjoying AlleleNews and AlleleBlogs: come back and check out our new Forum and FAQ Sections soon to be added to our blogs for quick product/service related exchange and messages of more user control.