090209 San Diego—Allele Biotech formally announced today that it has signed an agreement to distribute products from ChromoTek GmbH, a German company with a focus on camelid antibody fragment based precipitation and detection reagents. Single-domain antigen binding fragment, also called VHH or nanobody, can be derived from heavy chain-only antibodies produced by animals in the camel family. The small size and special structures of VHH enable their efficient binding into areas not normally accessible to larger IgG antibodies. Although GFP is a commonly used tag in fusion proteins for imaging, it has not yet become a widely used tag for precipitation. With the introduction of the first VHH-based research reagent GFP-Trap, GFP-fusions will become a desirable tool for pulldown. GFP-Trap is immobilized anti-GFP nanobody, which with a simple procedure, can result in quantitative depletion or isolation of GFP-fusions.
Applications of GFP-Trap may include ChIP-CHIP, CLIP, co-IP, enzyme activity analysis (see Allele Biotech’s product group main page for sample publications). Other products such as anti-RFP and anti-GFP monoclonal antibodies that may be used after GFP-fusion precipitation are now also available from Allele Biotech. “VHH fragments have great potentials in both therapeutic and basic research,” said Allele’s CEO Dr. Jiwu Wang, “The agreement will significantly strengthen Allele Biotech's position in the antibody field”. Allele Biotech started with a grant from the NIH in 2000 to develop ways to display and select antibodies. It participated in a collaborative project on yeast display for selecting antibodies against cancer antigens in 2007 for the NCI. After acquiring Orbigen in 2008, Allele has thousands of antibodies in its product line.
Wednesday, September 2, 2009
Allele Annouces New Products Based on Camelid Antibodies
Labels:
camelid antibodies,
ChIP,
Chip-chip,
CLIP,
Co-IP,
GFP,
GFP-fusion,
GFP-Trap,
nanobodies,
nanobody,
pull-down,
pulldown,
VHH
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment