Showing posts with label GFP-nAb. Show all posts
Showing posts with label GFP-nAb. Show all posts

Wednesday, February 12, 2014

What Does It Take to Bring New Nano Antibodies (nAbs) to the Hands of Researchers?

Judging from the hundreds of papers published using camelid VHH antibodies as reagents, there are probably thousands of researchers who have experience with this type of antibodies by now. We like to call the ~15kD camelid VHH antibody nano antibody or nAbTM. Once someone experiences how well a nAb works for co-IP using a fluorescent protein as tag, they often wonder what it takes to bring nAbs to broader use.
The success of a nAb project starts with the antigen presentation. It is critical to build the capability to produce large quantities of recombinant antigen for immunization. At Allele, our scientists also established some unique presentation formats for traditionally difficult targets (e.g. large membrane proteins).
After llama immunization, the next step is screening. With the goal of creating large scale nano antibodies against diverse targets, we have developed multiple high throughput screening methods to cover very large, diverse libraries generated from immunized animals. The technologies will continue to evolve as the scale of nAb generation continues to expand. We have the ability to functionally screen for site-blocking antibodies and antibodies that only recognized natively folded targets, or targets in their naturally occurring presentations.
A nAb isolation project does not end with the obtaining of a cDNA clone. Or, if it does, the nAb is probably not as great as what Allele Biotech has been offering. In our hands, all nAbs go through an engineering step beginning with the generation of a 3D structural model of the isolated clone. We use structure-guided design to alter the protein, allowing us to improve its properties. This includes increasing affinity, solubility, or altering the protein to improve performance for specific applications. We also like to use known structures of traditional monoclonal antibodies to assist camelid VHH antibody engineering against specific targets.
With a finalized clone in hand, the next step is to establish protocols for commercial production. The Allele team spends a tremendous amount of effort aimed solely at high-yield, low-cost recombinant VHH antibody production in a variety of formats, so that the costs for other scientists to take advantage of these great reagents can be kept as low as possible.
Last but not the least, nAb labeling, including conjugating stable soluble VHH antibody to solid supports for immunoprecipitation or to fluorophores for detection, requires additional expertise and tight operation control. However, our vision is to have a modular system for antibody labeling that will enable the end user to select from a variety of fluorophores and other detection tags, which can be instantaneously and irreversibly coupled via simple mixing.
Note added: we work with commercial (diagnostic and clinical) partners from developing nAbs all the way to the market. We have expert scientists available to customers and licensees for consultation and troubleshooting antibody- and imaging-related questions and problems.

Saturday, November 16, 2013

New Allele Biotech Publication on Stem Cells

Feeder-Free Reprogramming of Human Fibroblasts with Messenger RNA
Current Protocols in Stem Cell Biology • November 13, 2013
DOI: 10.1002/9780470151808.sc04a06s27
Authors: Luigi Warren, Jiwu Wang
This unit describes a feeder-free protocol for deriving induced pluripotent stem cells (iPSCs) from human fibroblasts by transfection of synthetic mRNA. The reprogramming of somatic cells requires transient expression of a set of transcription factors that collectively activate an endogenous gene regulatory network specifying the pluripotent phenotype. The necessary ectopic factor expression was first effected using retroviruses; however, as viral integration into the genome is problematic for cell therapy applications, the use of footprint-free vectors such as mRNA is increasingly preferred. Strong points of the mRNA approach include high efficiency, rapid kinetics, and obviation of a clean-up phase to purge the vector. Still, the method is relatively laborious and has, up to now, involved the use of feeder cells, which brings drawbacks including poor applicability to clinically oriented iPSC derivation. Using the methods described here, mRNA reprogramming can be performed without feeders at much-reduced labor and material costs relative to established protocols.
New Allele Product of the Month: FP-nAb™ products for 100% pull-down

Monday, November 4, 2013

Lab Skills You Stopped Being Proud Of

Molecular biologists who were in graduate school in the 90’s learned how to isolate plasmid DNA from E. coli cultures by a method called “boil-prep” during their first lab rotation. This process involved mixing the bacterial cell pellet in a little bit of detergent, salt and sucrose, dabbed with some fresh lysozyme, and then you are ready to cook, literally! Bacterial cell membranes are disrupted by boiling this soup in a beaker of water over a Bunsen Burner for one minute, and the debris (containing the broken cell membrane and attached chromosomal DNA) is collected by centrifugation in a microfuge at top speed for 10 minutes. Then comes the step that differentiates a true master of lab skills versus a rotation student—if you knew just the right amount of bacterial culture to begin with and handled the E coli pellet by the right techniques, a skillful lab person could collect nearly all the liquid without disturbing the pellet. Pouring out the plasmid-containing supernatant without dislodging the goo on the side/bottom of the tube was such a desirable skill that would not only give you your plasmid but also give you admiration from fellow lab members. That is, of course, if you were doing it before the mid-90’s, because after the introduction of miniprep spin columns by Qiagen, nobody, even the true masters of boil-preps (or its contemporary alkali prep that also involves pelleting by centrifugation and careful removal of tiny volume of liquids surrounding small pellets) would be showing off those skills any longer.
It is actually never easy or fun to collect liquid surrounding small amount of beads or pellets as you always have to struggle to remove as much liquid as possible while trying not to lose any of the beads
Some of the old-timers used to also be very proud of being able to pour a “sequencing gel” (a very thin ~40 cm x 30 cm polyacrylamide gel). I still remember the first time I reported to the second rotation lab at USC. After describing the lab research, the PI showed me around the lab and complained how “Sarah destroyed all my sequencing gel plates”. But consider this, in order to avoid any greasy spot on either plate, you needed to wash both of them fanatically if not religiously. Why? You would have just about a minute’s time to pour non-polymerized acrylamide without leaking from the sides or bubbles forming anywhere in the DNA running lanes, and then inserting a pair of paper-thin combs, all at a speed quicker than TEMED/AP-catalyzed acrylamide polymerization. Good thing that after capillary sequencing was invented, we all happily retired our sequencing-gel pouring skills with a collective sigh of relief.
Technology will always move forward, so will the skills lab researchers will be required to perfect. Using a spin column is very much a “skill-less” technique in contrast to collecting pellets and washing beads after centrifugation, but when there is a choice, people will chose the method that requires “less skills”, such as the spin-column format as the preferred platform for the new FP-nAb™ products.