Showing posts with label Camelid Antibody. Show all posts
Showing posts with label Camelid Antibody. Show all posts

Monday, November 4, 2013

Lab Skills You Stopped Being Proud Of

Molecular biologists who were in graduate school in the 90’s learned how to isolate plasmid DNA from E. coli cultures by a method called “boil-prep” during their first lab rotation. This process involved mixing the bacterial cell pellet in a little bit of detergent, salt and sucrose, dabbed with some fresh lysozyme, and then you are ready to cook, literally! Bacterial cell membranes are disrupted by boiling this soup in a beaker of water over a Bunsen Burner for one minute, and the debris (containing the broken cell membrane and attached chromosomal DNA) is collected by centrifugation in a microfuge at top speed for 10 minutes. Then comes the step that differentiates a true master of lab skills versus a rotation student—if you knew just the right amount of bacterial culture to begin with and handled the E coli pellet by the right techniques, a skillful lab person could collect nearly all the liquid without disturbing the pellet. Pouring out the plasmid-containing supernatant without dislodging the goo on the side/bottom of the tube was such a desirable skill that would not only give you your plasmid but also give you admiration from fellow lab members. That is, of course, if you were doing it before the mid-90’s, because after the introduction of miniprep spin columns by Qiagen, nobody, even the true masters of boil-preps (or its contemporary alkali prep that also involves pelleting by centrifugation and careful removal of tiny volume of liquids surrounding small pellets) would be showing off those skills any longer.
It is actually never easy or fun to collect liquid surrounding small amount of beads or pellets as you always have to struggle to remove as much liquid as possible while trying not to lose any of the beads
Some of the old-timers used to also be very proud of being able to pour a “sequencing gel” (a very thin ~40 cm x 30 cm polyacrylamide gel). I still remember the first time I reported to the second rotation lab at USC. After describing the lab research, the PI showed me around the lab and complained how “Sarah destroyed all my sequencing gel plates”. But consider this, in order to avoid any greasy spot on either plate, you needed to wash both of them fanatically if not religiously. Why? You would have just about a minute’s time to pour non-polymerized acrylamide without leaking from the sides or bubbles forming anywhere in the DNA running lanes, and then inserting a pair of paper-thin combs, all at a speed quicker than TEMED/AP-catalyzed acrylamide polymerization. Good thing that after capillary sequencing was invented, we all happily retired our sequencing-gel pouring skills with a collective sigh of relief.
Technology will always move forward, so will the skills lab researchers will be required to perfect. Using a spin column is very much a “skill-less” technique in contrast to collecting pellets and washing beads after centrifugation, but when there is a choice, people will chose the method that requires “less skills”, such as the spin-column format as the preferred platform for the new FP-nAb™ products.

Friday, September 23, 2011

About 50 Papers Cited the Use of GFP-Trap Camelid Antibody So Far in 2011

With their ability to quantitatively pulldown GFP-tagged proteins, GFP-Trap (or RFP-Trap for DsRed-derived fluorescent proteins) beads have gained ground in becoming the reagent of choice for immuno-coprecipitation. The complexes isolated from GFP-Trap agarose or magnetic beads can be easily analyzed without interference from light or heavy IgG chains typically present after monoclonal or polyclonal antibody precipitation. Since the market launch of GFP-Trap, in each of the past 3 years, the number of publications citing GFP-Trap more has than doubled and there is no sign of that rate slowing down any time soon.
In 2011 alone, 48 research groups have published their results with data generated through use of GFP-Trap (not including other related products such as GFP-Booster, GFP-MultiTrap). Research topics in these recent publications include identification of domains of the zinc finger protein 638 (ZNF638) that interacts with C/EBP? when promoting adipocyte differentiation [1]; identification of phosphorylation site on Cdc42-associated kinase (Ack) by LC-MS/MS after immunoprecipitation [2]; and analysis of the activities of myosin heavy-chain kinases (MHCKs) in wild-type vs Htt mutant Dictyostelium discoideum, a cellular model for studying the Huntingon disease [3].
The use of GFP-Trap beads is a simple bind-wash-elute procedure that involves just one antibody already immobilized on either agarose or magnetic beads. Camelid antibodies, especially their VHH single domain fragments such as those used in GFP-Trap or RFP-Trap, are very stable (they can be shipped and temporarily stored at room temperature). The consistency of performance is very high; as a matter of fact, this line of products requires the lowest amount of technical support among all of our products. If you are still using tags like FLAG, V5, HA, etc., you should consider trying GFP as both a fluorescence and co-IP tag in your future experiments for obtaining results you previously could not obtain.
New Product of the Week: Non-Integrating iPSC Generation Kits. First of its kind on the market. Click to read more about mRNA-based reprogramming.
Promotion of the Week: Save 15% to save the environment by using EcoCulture Dishes at 30% less plastic for better imaging. Code: 091911DISH when call or email us.
Blog References:
[1] Meruvu, S. et al. “Regulation of Adipocyte Differentiation by the Zinc Finger Protein ZNF638″ JBC 2011
[2] Shen, H. et al. “Constitutive activated Cdc42-associated kinase (Ack) phosphorylation at arrested endocytic clathrin-coated pits of cells that lack dynamin” Molecular Biology of the Cell 2011
[3] Wang, Y. et al. “Dictyostelium huntingtin controls chemotaxis and cytokinesis through the regulation of myosin II phosphorylation” Molecular Biology of the Cell 2011

Thursday, August 13, 2009

Camelid Antibodies--background

When it was discovered that animals in the camel family produce antibodies with no light chains, the idea that a single-domain fragment can bind as well as a full 4-chain antibody formed a breakthrough. So far it has been a relatively less known one.

Smaller antibody fragments have been tested for therapeutic uses because classical IgG antibodies are too bulky to penetrate tissues well, and very expensive to produce. Different combinations of antigen-binding variable regions are used, e.g. scFv, Fab, diabody, all to some degree of success. In comparison, the N-terminal domain of camelid antibodies, termed VHH domain, represents a naturally evolved, only 13-15 kD in size, fully functional target binding fragment with many advantages.

The only other known species outside camelidae family that has heavy chain antibodies is particular cartilaginous fish, nurse shark. Although the arrangement of CDRs is somewhat different between the camel and shark heavy chain variable regions, they share many characteristics such as extremely high stability (maintaining functions after100 C heat and extreme pH treatment).

Accumulating reports have demonstrated the therapeutic potentials of camelid antibody-based fragments in treating cancer, neural diseases, even use in hair dandruff preventing shampoo. For basic research, the tiny antigen binders can be used as tools for quantitative pull down with unmatched efficiency, recognizing previously inaccessible enzyme cleft as antigens, and providing libraries for binding partner selection.

Allele Biotech has been working on display antibody selection from its early days through an NIH grant, and recently carried out an NIH/NCI contract for scFv yeast display in collaboration with AvantGen. By working with Chromotek on camelid antibody products, we hope to combine our superior fluorescent proteins with the best antibody candidates and display technologies to move the capture and signaling fields forward in significant ways.

The product line will be formally announced by AlleleNews shortly.